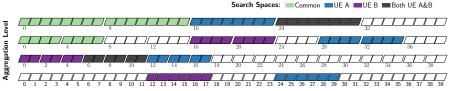

Blind Detection of Polar Codes

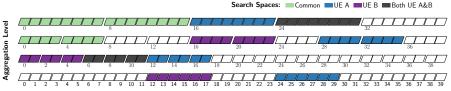
Pascal Giard, Alexios Balatsoukas-Stimming, and Andreas Burg

Telecommunications Circuits Laboratory, EPFL



Control Channel Detection for 5G

- For each UE, many slots can contain a control message
- Control messages are encoded with a polar code
- Don't know in advance...
 - if a location contains a control message
 - the polar-code parameters used for encoding


Control-Channel Element Index

Control Channel Detection for 5G

- For each UE, many slots can contain a control message
- Control messages are encoded with a polar code
- Don't know in advance...
 - if a location contains a control message
 - the polar-code parameters used for encoding

Control-Channel Element Index

Large search space, what can we do?

• Conduct SCL decoding on EVERYTHING

• Conduct SCL decoding on EVERYTHING \Rightarrow Way too complex

- Conduct SCL decoding on EVERYTHING \Rightarrow Way too complex
- Conduct SC decoding on everything

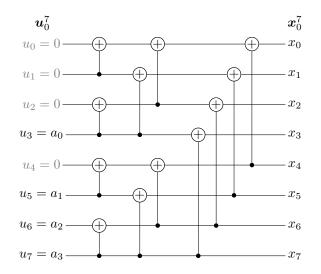
- Conduct SCL decoding on EVERYTHING
 - \Rightarrow Way too complex
- Conduct SC decoding on everything
 - \Rightarrow Risk of missing messages that can be decoded by SCL

- Conduct SCL decoding on EVERYTHING
 - \Rightarrow Way too complex
- Conduct SC decoding on everything
 - \Rightarrow Risk of missing messages that can be decoded by SCL
- Calculate a detection metric as SC decoding is carried out, to later pass the best candidates to an SCL decoder

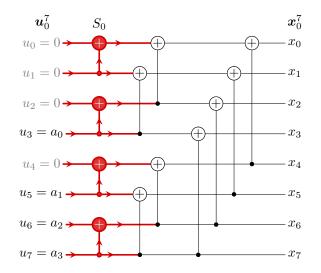
- Conduct SCL decoding on EVERYTHING
 - \Rightarrow Way too complex
- Conduct SC decoding on everything
 - \Rightarrow Risk of missing messages that can be decoded by SCL
- Calculate a detection metric as SC decoding is carried out, to later pass the best candidates to an SCL decoder

 \Rightarrow Pushes more candidates to SCL decoder compared to using SC alone

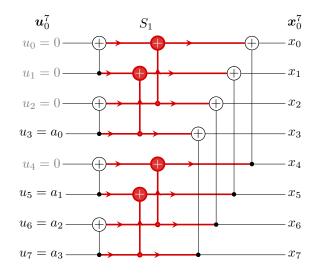
 \Rightarrow Only makes sense if added complexity is much lower than that of multiple SCL decoders

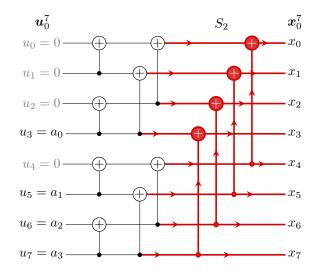

- Conduct SCL decoding on EVERYTHING
 - \Rightarrow Way too complex
- Conduct SC decoding on everything
 - \Rightarrow Risk of missing messages that can be decoded by SCL
- Calculate a detection metric as SC decoding is carried out, to later pass the best candidates to an SCL decoder
 - \Rightarrow Pushes more candidates to SCL decoder compared to using SC alone
 - \Rightarrow Only makes sense if added complexity is much lower than that of multiple SCL decoders

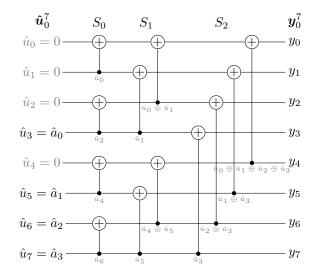
How should we define that metric?

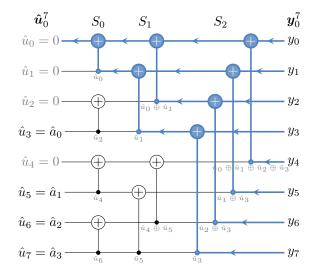


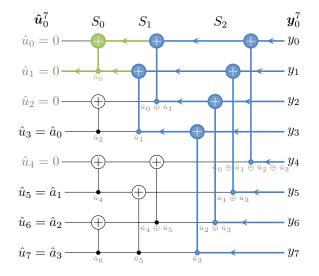
About Polar Codes

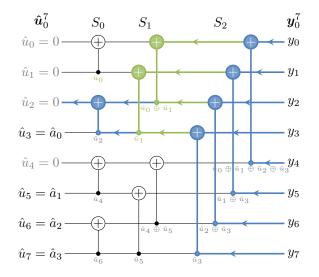


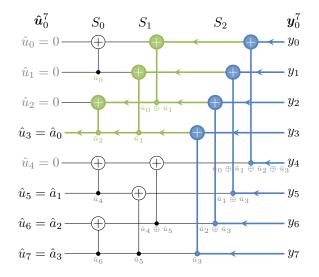


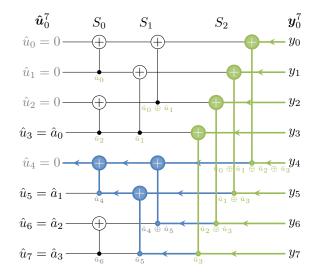


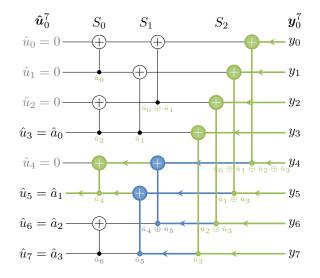


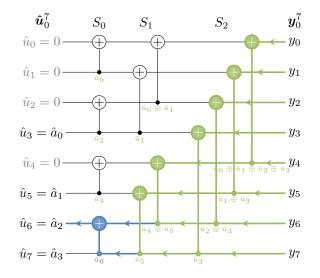


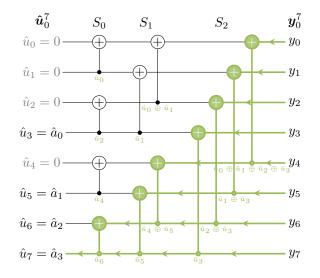


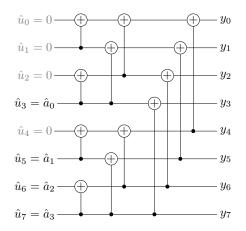


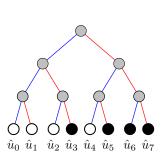


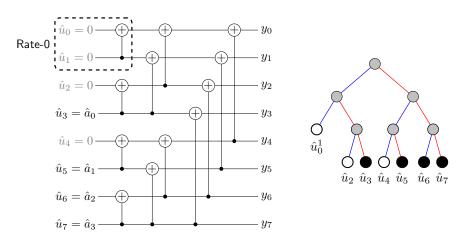


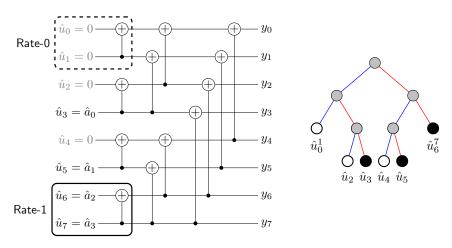




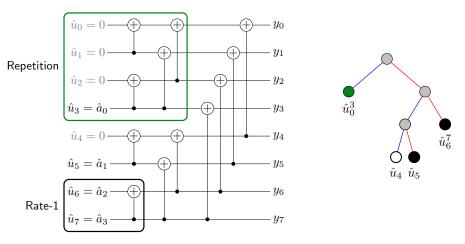




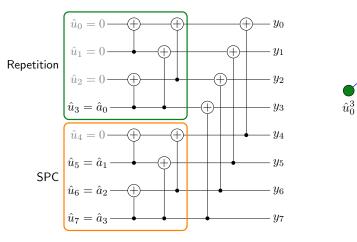




Alamdar-Yazdi and Kschischang., "A Simplified Successive-Cancellation Decoder for Polar Codes," IEEE COML, 2011.

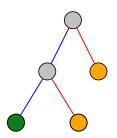


Alamdar-Yazdi and Kschischang., "A Simplified Successive-Cancellation Decoder for Polar Codes," IEEE COML, 2011.



Alamdar-Yazdi and Kschischang., "A Simplified Successive-Cancellation Decoder for Polar Codes," IEEE COML, 2011. Sarkis, Giard, Vardy, Thibeault and Gross, "Fast Polar Decoders: Algorithm and Implementation," IEEE J-SAC, 2014.

Alamdar-Yazdi and Kschischang., "A Simplified Successive-Cancellation Decoder for Polar Codes," IEEE COML, 2011. Sarkis, Giard, Vardy, Thibeault and Gross, "Fast Polar Decoders: Algorithm and Implementation," IEEE J-SAC, 2014.



Proposed Blind-Detection Method

Detection Metric

- Exploit the inherent structure of three constituent-code types to compute a detection metric
- The bigger the value of the detection metric, the more likely a received block is encoded with the expected polar code
- Use the detection metric to determine which blocks are forwarded to the next stage, i.e., the more complex decoder

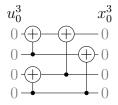
Proposed Steps

 Conduct (complete or partial) Fast-SSC decoding on all candidates

Proposed Steps

- Conduct (complete or partial) Fast-SSC decoding on all candidates
- Compute detection metric along the way, using update rules specific to the constituent codes that contain structural information

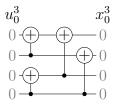
Proposed Steps


- Conduct (complete or partial) Fast-SSC decoding on all candidates
- Compute detection metric along the way, using update rules specific to the constituent codes that contain structural information
- Pass on a subset of the best candidates to a more complex SCL decoder

Update Rules – Rate-0 "Code"

 Estimated bit vector û known a priori to be solely made of frozen bits, i.e., to be an all-zero vector

 $\boldsymbol{x} = [0, 0, 0, 0]$



Update Rules – Rate-0 "Code"

 Estimated bit vector û known a priori to be solely made of frozen bits, i.e., to be an all-zero vector

 \Rightarrow All soft-input LLRs α should be positive if the block is encoded with the expected polar code, otherwise the LLR signs should be random

 $\boldsymbol{x} = [0,0,0,0]$



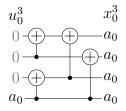
Update Rules – Rate-0 "Code"

 Estimated bit vector û known a priori to be solely made of frozen bits, i.e., to be an all-zero vector

 \Rightarrow All soft-input LLRs α should be positive if the block is encoded with the expected polar code, otherwise the LLR signs should be random

 $\boldsymbol{x} = [0,0,0,0]$

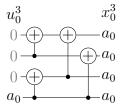
$$\mathcal{D}_t = \mathcal{D}_{t-1} + \frac{1}{N_v} \left(\sum_{i=0}^{N_v - 1} \alpha_i \right)$$


• Scaling factor to normalize w.r.t. to constituent code length

Update Rules – Repetition Code

• The only information bit is repeated on all outputs

 $\boldsymbol{x} = [a_0, a_0, a_0, a_0]$

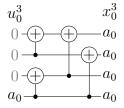


Update Rules – Repetition Code

• The only information bit is repeated on all outputs

 \Rightarrow All soft-input LLRs α should have the same sign if the block is encoded with the expected polar code, otherwise the LLR signs should be random

$$\boldsymbol{x} = [a_0, a_0, a_0, a_0]$$

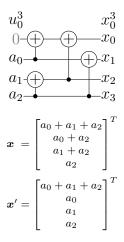


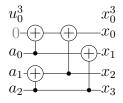
Update Rules – Repetition Code

• The only information bit is repeated on all outputs

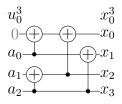
 \Rightarrow All soft-input LLRs α should have the same sign if the block is encoded with the expected polar code, otherwise the LLR signs should be random

$$\boldsymbol{x} = [a_0, a_0, a_0, a_0]$$


$$\mathcal{D}_t = \mathcal{D}_{t-1} + \frac{1}{N_v} \left| \sum_{i=0}^{N_v - 1} \alpha_i \right|$$

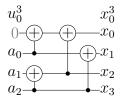

- Parity bit calculated as $p = \bigoplus_{i=0}^{N_v-1} \mathrm{HD}(\alpha_i)$

- Parity bit calculated as $p = \bigoplus_{i=0}^{N_v-1} \mathrm{HD}(\alpha_i)$
- With random inputs, parity bit will be satisfied with probability $1\!/\!2$



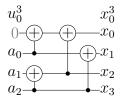
$$\boldsymbol{x} = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + a_2 \\ a_1 + a_2 \\ a_2 \end{bmatrix}^T$$
$$\boldsymbol{x}' = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 \\ a_1 \\ a_2 \end{bmatrix}^T$$

- Parity bit calculated as $p = \bigoplus_{i=0}^{N_v-1} \mathrm{HD}(\alpha_i)$
- With random inputs, parity bit will be satisfied with probability $1\!/\!2$
- SPC codes carry very little information compared to rate-0 and Repetition codes


$$\boldsymbol{x} = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + a_2 \\ a_1 + a_2 \\ a_2 \end{bmatrix}^T$$
$$\boldsymbol{x}' = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 \\ a_1 \\ a_2 \end{bmatrix}^T$$

- Parity bit calculated as $p = \bigoplus_{i=0}^{N_v-1} \mathrm{HD}(\alpha_i)$
- With random inputs, parity bit will be satisfied with probability $1\!/\!2$
- SPC codes carry very little information compared to rate-0 and Repetition codes

 \Rightarrow Use the least-reliable soft-input LLR to update the detection metric

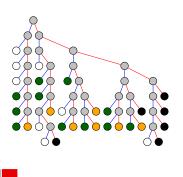

$$\mathbf{x} = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + a_2 \\ a_1 + a_2 \\ a_2 \end{bmatrix}^T$$
$$\mathbf{x}' = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 \\ a_1 \\ a_2 \end{bmatrix}^T$$

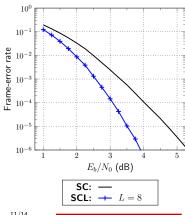
- Parity bit calculated as $p = \bigoplus_{i=0}^{N_v-1} \mathrm{HD}(\alpha_i)$
- With random inputs, parity bit will be satisfied with probability $1\!/\!2$
- SPC codes carry very little information compared to rate-0 and Repetition codes
 - \Rightarrow Use the least-reliable soft-input LLR to update the detection metric

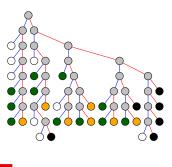
$$\mathcal{D}_t = \mathcal{D}_{t-1} + (-1)^p \min\left(\left|\alpha_0^{N_v - 1}\right|\right)$$

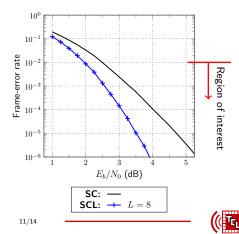
$$\mathbf{x} = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + a_2 \\ a_1 + a_2 \\ a_2 \end{bmatrix}^T$$
$$\mathbf{x}' = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 \\ a_1 \\ a_2 \end{bmatrix}^T$$

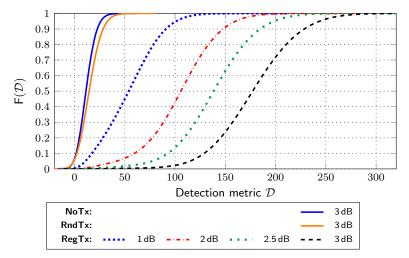
- 3 transmission scenarios:
 - NoTx: no data was transmitted over the channel
 - RndTx: random data transmitted over the channel
 - RegTx: frames encoded with polar code of interest were transmitted

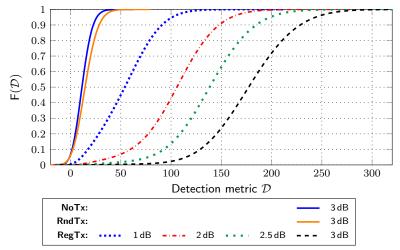


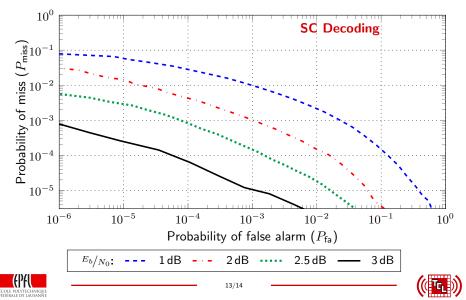

- 3 transmission scenarios:
 - NoTx: no data was transmitted over the channel
 - RndTx: random data transmitted over the channel
 - RegTx: frames encoded with polar code of interest were transmitted
- AWGN channel

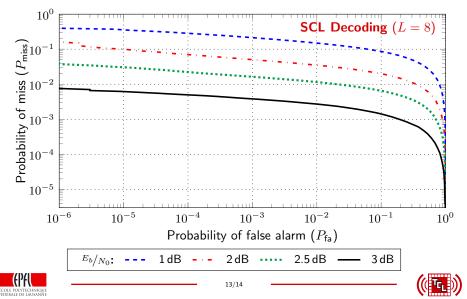

- 3 transmission scenarios:
 - NoTx: no data was transmitted over the channel
 - RndTx: random data transmitted over the channel
 - RegTx: frames encoded with polar code of interest were transmitted
- AWGN channel
- Polar code: (512, 64 + 16)




- 3 transmission scenarios:
 - NoTx: no data was transmitted over the channel
 - RndTx: random data transmitted over the channel
 - RegTx: frames encoded with polar code of interest were transmitted
- AWGN channel
- **Polar code**: (512, 64 + 16)


Experimental CDFs of the detection metric


Experimental CDFs of the detection metric


Metric starts to be really good at 2 dB, the region of interest!

Miss rate and false-alarm rate: $P_{\text{miss}} \triangleq \Pr(\mathcal{D} < d \mid \mathcal{F}_1), P_{\text{fa}} \triangleq \Pr(\mathcal{D} \ge d \mid \mathcal{F}_0)$

Miss rate and false-alarm rate: $P_{\text{miss}} \triangleq \Pr(\mathcal{D} < d \mid \mathcal{F}_1), P_{\text{fa}} \triangleq \Pr(\mathcal{D} \ge d \mid \mathcal{F}_0)$

• The search space for control messages in the 5G control channel is very large

- The search space for control messages in the 5G control channel is very large
- Running an SCL decoder on all candidates is impractical

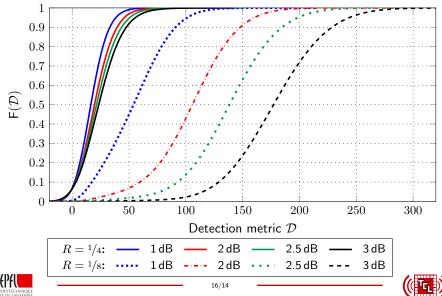
- The search space for control messages in the 5G control channel is very large
- Running an SCL decoder on all candidates is impractical
- We showed how to devise a low-complexity detector
 - Built from a fast-SSC decoder
 - Exploits the structure of constituent codes

- The search space for control messages in the 5G control channel is very large
- Running an SCL decoder on all candidates is impractical
- We showed how to devise a low-complexity detector
 - Built from a fast-SSC decoder
 - Exploits the structure of constituent codes
- Allows to quickly reduce a list of candidates to a tractable number

- The search space for control messages in the 5G control channel is very large
- Running an SCL decoder on all candidates is impractical
- We showed how to devise a low-complexity detector
 - Built from a fast-SSC decoder
 - Exploits the structure of constituent codes
- Allows to quickly reduce a list of candidates to a tractable number

- The search space for control messages in the 5G control channel is very large
- Running an SCL decoder on all candidates is impractical
- We showed how to devise a low-complexity detector
 - Built from a fast-SSC decoder
 - Exploits the structure of constituent codes
- Allows to quickly reduce a list of candidates to a tractable number

Thank you for listening!

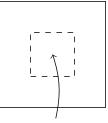


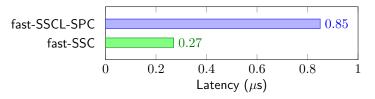
Bonus Slides

Correlated Input – Different Rate

Experimental CDFs of \mathcal{D} ; detecting for R = 1/8

Different Rate – Different Decoder Tree




Complexity of the Detector

- Worst case time and area complexities approach that of a fast-SSC decoder
- May not be necessary to run the detector on the complete decoder tree
- Area complexity of a fast-SSC decoder is much lower than that of an SCL decoder for $L=8\,$

Hashemi, Condo, and Gross., "Fast and Flexible Successive-Cancellation List Decoders for Polar Codes," IEEE TSP, 2017. Giard, Balatsoukas-Stimming, Sarkis, Thibeault, and Gross., "Fast Low-Complexity Decoders for Low-Rate Polar Codes," Springer JSPS, 2016.

