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Abstract—Full-duplex communication systems require very
strong self-interference suppression. Unfortunately, perfect sup-
pression is not possible in practice and some residual self-
interference remains. This residual self-interference acts as ad-
ditive noise whose statistical properties may be different from
those of thermal noise. This work presents a measurement-based
study of the statistical properties of residual self-interference
on an OFDM based full-duplex MIMO testbed. Moreover, we
quantify the effect that residual self-interference has on some
popular MIMO receivers and we employ a strategy to reduce
the performance impact of residual-self interference.

I. INTRODUCTION

True full-duplex (FD) wireless communication [1] has re-
cently re-attracted significant attention. In FD systems the
strong self-interference which is present needs to be sup-
pressed, ideally to the level of the thermal noise floor. Suppres-
sion can be achieved by passive means or by active injection
of a cancelation signal. One can generate a cancelation signal
directly in the analog domain [2] or in the digital domain [3].
This second approach provides slightly worse performance
than the first approach, but it is more suitable for full-duplex
MIMO (FD-MIMO) applications [4]. The suppression method
proposed in [3] is limited by transmitter imperfections [5].
Thus, there is a small residual self-interference signal, con-
taining mainly these imperfections, which the receiver sees
as additive noise. The performance of MIMO receivers with
transmitter-signal distortions that are similar to those causing
the residual self-interference in FD-MIMO was studied in [6].
An i.i.d. Gaussian assumption is used in [6] to model the
imperfections in a MIMO-OFDM context. However, it is not
obvious that the same model can be used for the residual
self-interference in FD-MIMO systems and more sophisticated
models have already been studied [7], [8].

Contribution: In this work, we measure the residual self-
interference both in the time domain and in the frequency
domain on an FD-MIMO testbed and we make a first step
towards its modeling. Moreover, we study the effect of residual
self-interference on two well-known MIMO receivers through
MATLAB simulations which use measured noise samples
from our testbed.

II. MIMO RECEIVERS AND FULL-DUPLEX MIMO

A. MIMO Receivers

Consider an M × M MIMO node which is receiving a
signal x ∈ OM over a channel H, where O denotes the set
of constellation points and E[xxH ] = IM . The discrete time

complex baseband input-output relation is y = Hx+nr, where
nr ∼ CN (0, σ2

r IM ) denotes the thermal noise at the receiver.
1) ZF receiver: The ZF detection algorithm tries to undo

the effect of the channel H by multiplying the received vector
y with the inverse channel matrix H−1. The result is then
demapped to the nearest constellation point according to

x̂ZF = D
(
H−1y

)
, (1)

where D(·) denotes the component-wise scalar ML detector.
2) ML receiver: Under complex normal i.i.d. noise, ML

detection reduces to the nearest neighbor rule, i.e.,

x̂ML = arg min
x∈OM

‖y −Hx‖. (2)

B. Full-duplex MIMO

An OFDM FD-MIMO node is receiving a signal from a re-
mote node, denoted by x, over a channel H, while at the same
time transmitting its own signal xt ∈ OM , where O denotes
the set of constellation points and E[xtx

H
t ] = IM . The node

receives its own transmission through the self-interference
channel Ht. Without active self-interference cancelation the
complex baseband input-output relation is

y = Hx+Htxt + nr. (3)

In order to perform active cancelation, the cancelation signal
xc is constructed in the complex baseband domain so that
Hcxc = −Htxt, and it is upconverted using a second set of
RF chains and added to the received RF signal. Moreover,
we consider the case where both xt and xc are distorted due
to transmitter imperfections. As in [7], [8], we model these
imperfections as additive noise in the complex baseband, so
that the impaired signals, denoted by x̃t and x̃c, respectively,
are given by

x̃t = xt + nt, x̃c = xc + nc. (4)

Thus, when cancelation is performed and in the presence of
transmitter impairments, we have

y = Hx+Htx̃t +Hcx̃c + nr (5)
= Hx+Htnt +Hcnc + nr. (6)

We define the effective noise as

neff , Htnt +Hcnc + nr, (7)

which leads to y = Hx + neff. For simplicity, we do not
consider transmitter impairments in the remote signal x as



these will typically lie far below the noise floor caused by
neff. As can be seen from (7), the elements of neff will always
be spatially correlated, since they are linear combinations of
the elements of nt and nc.

III. FD-MIMO TESTBED AND MEASUREMENT SETUP

Our 2×2 FD-MIMO node, which is described in more detail
in [4], is based on the National Instruments PXIe platform
with NI 5791R RF modules providing the conversion from
complex baseband samples to the analog RF domain. Two RF
modules are required per MIMO channel: one for transmission
and reception and one to generate the cancelation signal.
Each of the two RF modules is equipped with a circulator,
which provides approximately 15 dB of isolation between the
transmitter and the receiver. One omnidirectional antenna with
a 2 dBi gain is used per chain and the spacing between the two
antennas is 15 cm. The most important transmitter impairment
that limits suppression in FD systems is phase noise [5].
In our testbed, the carrier is shared between all transmitter
chains, hence, in principle, they should experience identical
phase noise. However, in practice they experience only highly
correlated phase noise, because of slight differences in the
self-interference and the cancelation signal path lengths. The
complex baseband samples are generated in MATLAB and
are transferred via Ethernet to the PXIe platform. The PXIe
platform, in turn, records the received baseband samples and
sends them back to MATLAB.

The measurements are performed as follows. We operate in
the 2.45 GHz band with a 0 dBm transmit power. Each OFDM
frame consists of 40 OFDM symbols with QPSK modulation,
with a 10 MHz bandwidth split into 256 subcarriers. We
transmit Nf = 100 OFDM frames xt and the correspond-
ing cancelation signals xc and we record the residual self-
interference signal for each receiver. We concatenate the
resulting residual self-interference signals into a 2×N matrix,
denoted by N, where N = Nf · Ns and Ns is the number
of time domain samples contained in each OFDM frame (in
our case Ns = 12′240, because we use a cyclic prefix of
50 samples). All measurements are performed in the absence
of the remote signal x, since our aim is to measure and
characterize neff. We note that the overall RF suppression is
more than 65 dB, so we are able to operate our receiver at its
maximum sensitivity when measuring neff. This means that the
power of the self-interference is reduced to a level at which a
remote signal x, if it were present, could be received with no
impact on the sensitivity of the receiver. The channels Ht and
Hc are estimated using a long estimation sequence to minimize
the estimation error. We thus ensure that (6) holds and that the
traces of xt left in the residual signals are minimal.

IV. CHARACTERIZATION OF EFFECTIVE NOISE

A. Statistical metrics

The spatial correlation of neff along the two antennas is
given by the covariance matrix K, which is defined as K ,

E
[
(neff − E[neff]) (neff − E[neff])

H
]
. We estimate K as

K̂ =
1

N
(N−m) (N−m)

H
, (8)

where mi = 1
N

∑N
k=1 Ni,k, i = 1, 2, is the ML estimate

of E[neff]. Moreover, we compute an estimate of the auto-
correlation of each element of neff in time as

R̂i,j =

{ ∑N−j−1
k=0 Ni,j+kN

∗
i,k, j ≥ 0,

R̂∗i,−j , j < 0,
(9)

with i = 1, 2, and j = −Nf · Ns + 1, . . . , Nf · Ns − 1.
Furthermore, we fit some probability distributions to N in
order to estimate the statistics of neff in the time and in the fre-
quency domain. Finally, we briefly comment on the correlation
between R(neff) and I(neff), and on the circularity of neff by
using the pseudo-variance for each chain i, which is defined
as τ2i , E

[
n2

eff,i

]
and estimated as τ̂2i = 1

N

∑N
j=1 N

2
i,j . A

smaller pseudo-variance indicates a more circular complex
random variable.

B. Results

1) Spatial Covariance Matrices: We computed the follow-
ing spatial covariance matrices for the effective noise in the
time domain

K̂time =

[
0.0067 −0.0013− 0.0031i

−0.0013 + 0.0031i 0.0053

]
, (10)

and in the frequency domain

K̂freq =

[
0.0070 −0.0013− 0.0039i

−0.0013 + 0.0039i 0.0057

]
, (11)

which both clearly indicate that the effective noise is spatially
correlated.1 In order to assess whether the correlation comes
only from the channels Ht and Hc, we performed the follow-
ing experiment in MATLAB. We generated nc and nt with
i.i.d. elements and applied (7) with the estimated channels
Ht and Hc. The resulting effective noise is significantly less
correlated than the effective noise that we observe, which
suggests that nt and nc are inherently correlated.

2) Autocorrelations: In Fig. 1 we plot a normalized version
of |R̂1,j | in the time domain. We observe that the autocorre-
lation decays very quickly with increasing lag j. Moreover, as
can be seen in Fig. 2, where a normalized version of |R̂1,j | in
the frequency domain is plotted, there is no visible correlation
across the carriers. We note that |R̂2,j | (not plotted here)
shows the same behavior both in the time and in the frequency
domain.

1The covariance matrix is invariant with respect to the FFT operation.
However, the correlation in (10) is slightly different from the one in (11)
because the FFT operation is performed in blocks of N samples of each row
of N, and not over each entire row of N.
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Fig. 1. Magnitude of the autocorrelation of N1,j in the time domain.
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Fig. 2. Magnitude of the autocorrelation of N1,j in the frequency domain.

3) Histograms: In Fig. 3, we present an indicative his-
togram of R(N1,j), along with a normal distribution fitted
to our measurements. Interestingly, we find that a normal
distribution does not represent our time domain effective
noise accurately. Instead, we found that the t location-scale
distribution can very accurately represent our data. The t
location-scale distribution has three parameters, namely, µ,
which is the location parameter, σ2, which is the scaling
parameter, and ν, which is the degrees of freedom parameter.
For ν → ∞, the distribution becomes Gaussian. A fitted t
location-scale distribution is also shown in Fig. 3. We know
from our measurements that the effective noise in the time
domain is a zero-mean stochastic process. Let us also assume
that the effective noise samples in the time domain are i.i.d.
Then, each effective noise sample in the frequency domain
is a linear combination of zero-mean i.i.d. random variables,
which, by the (Lyapunov) central limit theorem, converges to
a Gaussian random variable. In Fig. 4 we see that the effective
noise in the frequency domain is indeed well represented by
a Gaussian distribution. We note that I(N1,j), R(N2,j), and
I(N2,j), which are not plotted here, show the same behavior
both in the time and in the frequency domain.

4) Correlation and circularity: In Fig. 5 and Fig. 6, we
present histograms of N1,j in the time and in the frequency
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Fig. 3. Histogram of R(N1,j) measured in the time domain with fitted
Gaussian distribution with µ ≈ 0 and σ2 = 0.0625, and t location-scale
distribution with µ ≈ 0, σ2 = 0.0571, and ν = 14.57.
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Fig. 4. Histogram of R(N1,j) measured in the frequency domain with
fitted Gaussian distribution with µ ≈ 0 and σ2 = 0.0592, and t location-
scale distribution with µ ≈ 0, σ2 = 0.0591, and ν ≈ 523.71.

domain. We observe that in the time domain the correlation
between R(neff,1) and I(neff,1) is very apparent, while in
the frequency domain this correlation disappears. Moreover,
since in the frequency domain the real and imaginary parts
of each element of neff are well approximated by a Gaus-
sian random variable, we can also say that they are (ap-
proximately) independent. For the pseudo-variance, we have
τ̂21 = 0.0009 + 0.0024i in the time domain and τ̂21 =
−1.31·10−5+2.35·10−7i in the frequency domain, indicating
that in the frequency domain neff,1 is more circular.

V. EFFECT ON ZF AND ML RECEIVERS

We perform simulations in order to compare the perfor-
mance of the ZF and ML receivers under i.i.d. complex
normal noise and under the recorded effective noise. The i.i.d.
complex normal noise is generated in MATLAB, while for the
effective noise we use the frequency domain noise samples
N that we recorded using our testbed. More specifically,
we simulate an OFDM system with QPSK modulation. Each
frame consists of one OFDM symbol, which in turn contains
50 data symbols. Moreover, we apply the noise whitening
method presented in [6] to combat the spatially correlated



Fig. 5. Histogram of N1,j in the time domain.

Fig. 6. Histogram of N1,j in the frequency domain.

noise. The whitening method is based on pre-multiplying the
received vector y and the channel matrix H with a whitening
filter W, where W = K−1/2. We observe in our experiments
that K̂ varies slightly from frame to frame. Ideally, one would
like to use the K̂ that corresponds to each frame, but in a real-
world scenario it is harder to accurately estimate K̂ because
of the presence of the signal x of the remote node, which
disturbs the parameter estimation. For this reason, we use
the average K̂ which we calculated in Section III to perform
whitening. The recorded effective noise N is normalized in
such a way that, after noise whitening, it has a power equal
to the generated i.i.d. complex normal noise for each SNR,
where the power N0 and the (per-antenna) SNR are defined as
N0 = 1

2N ‖N‖
2
F and SNR = 1

N0
, respectively. The power N0

is then spread equally across the antennas and across the real
and imaginary dimensions. The recorded noise samples are
randomly interleaved with respect to time in order to eliminate
any time-correlation. However, we are careful to use noise
samples from the same time instance for each receiver in order
to maintain the spatial correlation. For our simulations, it is
assumed that H ∼ CN (0, I2).

In Fig. 7 we plot the frame error rate (FER) for the ZF
and ML receivers under complex normal noise and under the
recorded noise. We observe that the performance of both the
ZF and ML receivers is degraded with respect to the case
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Fig. 7. FER of ZF and ML receivers under i.i.d. complex normal and
measured frequency domain effective noise for an OFDM FD-MIMO system.

where we have complex normal noise when noise whitening
is not performed. Moreover, we observe that noise whitening
does indeed improve the performance of the ML receiver,
while it does not affect the ZF receiver, as expected [6].

VI. CONCLUSION

In this paper, we measured the residual self-interference
on an FD-MIMO testbed. Interestingly, the residual self-
interference of our testbed in the time domain is not well
described by a Gaussian distribution. After the FFT function
performed by the OFDM receiver, the distribution of the
residual self-interference at each receiver is well approximated
by the usual circular symmetric complex normal distribution,
but the noise is spatially correlated across the receiver chains.
We also studied the effect of residual self-interference on some
MIMO receivers and we applied a noise whitening method to
improve their performance under spatially correlated noise.
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